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1. Introduction        
Regression model plays a significant role in data analysis, as it is being used in various fields to analyze data. It 

serves as predictive modeling technique that examines the relationship that exists between two variables (dependent 

and independent variables). (Jege et al., 2022). However, extreme values and multicollinearity pose serious problems 

for regression analysis, resulting in skewed estimates and untrustworthy conclusions. When predictor variables exhibit 

strong correlation, multicollinearity arises, leading to exaggerated variances of the predicted coefficients. Outliers, or 

extreme values, can have an unbalanced impact on the regression model and produce inaccurate findings. Also, 

regression analysis has long been known to have issues with multicollinearity. Farrar and Glauber (1967) highlighted 

the problems it produces as early as 1967 which include inflated standard errors and untrustworthy statistical tests. 

Many robust estimators have been proposed in order to lessen the effects of multicollinearity such as principal 

component regression Jolliffe, (1982), partial least squares regression Wold et al. (1984), and ridge regression (Hoerl 

and Kennard, 1970) have been proposed to handle multicollinearity. Hoerl and Kennard (1970) created ridge 

regression, which reduces variance and shrinks coefficients by adding a regularization component to the ordinary least 

squares (OLS) objective function. Ridge regression may still be sensitive to extreme values even with its efficacy. By 

converting the predictor variables into uncorrelated principal components, Principal Component Regression (PCR) 

resolves multicollinearity (Jolliffe, 1982). Furthermore, Liu estimator by Liu (1993), the ridge regression estimator and 

the Principal Component Regression (PCR) estimate were combined by Baye and Parker (1984) to develop the r–k 

class estimator. Similarly, the r–d class estimator was developed by Kaciranlar and Sakallioglu (2001) using PCR and 

the Liu estimator.  

Similarly, other researchers have combined two or more estimators in order to circumvent the problem of 

multicollinearity in regression models. These include the two-parameter estimator by Ozkale and Kaciranlar (2007), 

the k-d class estimator by Sakallioglu and Kaciranlar (2008), Yang and Chang (2010) created a novel two-parameter 

estimator by merging the PCR estimator with the Unbiased Ridge Regression (URR) estimator of Crouse et al. (1995). 

Similarly, other researchers have combined two or more estimators in order to circumvent the problem of 

multicollinearity in regression models. These include the modified r –k class ridge regression (MCRR) estimate was 

developed by Batah et al. (2009) by merging the Unbiased Ridge Regression (URR) estimator by Crouse et al. (1995) 

with the PCR estimator, a new two parameter estimator by Yang and Chang (2010). Meanwhile, Mansson et al. (2018) 

worked on a few estimators for the ridge parameter of the multinomial logit model, evaluating the efficacy of various 
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estimators taken into consideration using MSE as a yardstick. The DK estimator by Dawoud and Kibria (2020), Ahmad 

and Aslam (2020) introduced a novel two-parameter estimator termed the Modified novel Two-type parameter 

Estimator (MNTPE) when exogenous variables are correlated in a multiple regression model. Among other things, 

Lukman et al. (2020) also merged the modified ridge-type estimator and the PCR estimator. In the case of Alabi et al. 

(2014), they examined the tolerable sample size needed for traditional estimator to be used when multicollinearity exist 

among the regressors. Idowu et al. (2023) proposed the two-parameter version of Kibria-Lukman estimator in a bid to 

further deal with the problem of multicollinearity in linear regression analysis. In the same spirit, Idowu et al. (2023) 

developed a two-parameter estimator for correlated Regressors in Gamma Regression Model which is an expansion of 

linear regression model whereby Gamma Modified Two-Parameter (GMTP) estimator was proposed as a means of 

dealing with the problem of multicollinearity. Their study revealed that the newly proposed estimator outperformed 

other estimators such as Maximum Likelihood Estimator (MLE), Gamma Ridge Estiamtor (GRE), Gamma Liu 

Estimator (GLE) and Gamma Liu Type Estimator (GLTE) both theoretically and using Monte Carlo experiment. 

However, PCR among some other aforementioned estimators does not necessarily handle outliers effectively and 

coincidentally or naturally the two problems may be present in the data. Regression analysis becomes even more 

complex when extreme values are present. Robust regression techniques, such the least median of squares (LMS) and 

the least trimmed squares (LTS), were established by Rousseeuw and Leroy (1987) to reduce the impact of outliers. 

Although these techniques work well against outliers, multicollinearity may not be sufficiently addressed. Majeed et 

al. (2021) have suggested a robust M-Kibria-Lukman estimator, which is a relatively new invention that addresses 

extreme values and multicollinearity. In order to increase efficiency and robustness, Kibria (2003) presented a class of 

ridge estimators that utilize robust regression concepts. This work was expanded upon by Lukman et al. (2012), who 

introduced hybrid estimators that combine robust approaches and ridge regression's advantages. Simulation research 

and empirical applications have demonstrated the potential of these hybrid estimators, offering improved performance 

over traditional methods. The significance of maintaining equilibrium between bias and variance when 

multicollinearity and outliers are present was highlighted by Kibria and Lukman (2012). They proved that typical ridge 

regression and robust regression techniques are not as effective at achieving this balance as their suggested estimators. 

Further research, such that done by Özkale and Kibria (2017), has confirmed the usefulness of Kibria-Lukman 

estimators in more situations. Modified Ridge M-estimator by Hassan (2017) and Lukman et al. (2019) proposed a 

robust estimator that can handle three joint problems in regression analysis which include; multicollinearity, outliers, 

and autocorrelation. Dawoud and Abonazel (2021) proposed Robust Dawoud-Kibria and so on. More recently is 

Robust M-New Two Parameter estimator by Adejumo et al. (2023) as an alternative estimator that can simultaneously 

suppress the problem of multicollinearity and outliers in linear regression analysis. Hence, this work focuses on a 

comparative investigation of a few one and two-parameter estimators. The following robust regression estimators 

which include (M, MM, S, LTS, LMS, LAD and LQS) estimators were combined with the MRT-estimator. The goal 

is to assess these estimators' performance in terms of minimum Mean Squares Error (MSE) using some real-life data. 

2.1 Materials and Methods 

2.1.1 The Traditional Least Square Estimator 

The traditional linear regression model also known as Ordinary Least Square (OLS) is given in equation (1) where X 

is an pn  known matrix independent variable with full rank, y is an 1n  vector response variable, 1p  is the 

1p vector of unknown regression coefficients and U  is the 1n  vector random error terms with  0)( =UE and  

n

T IUUE 2) ( =  such that nI is an identity matrix of nn .  

UXY p += 1          (1) 

If ),( XIM = and 
TT ),( 10  = therefore, the Ordinary Least Squares (OLS) of 1p in (1) can be written as: 

yXG T

OLS

1−=          (2) 

where XXG T=  

 

 

The Canonical form of the Traditional Least Square Estimator 

The canonical form of the model in (1) can be written as: 
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UZY +=           (3) 

 where  TTXTZ == , and T is the orthogonal matrix with columns that constitute the eigenvalues of  G   . 

Hence, )...,,,( 21 p

TT diagGTTZZ === such that
p  ...,21

are the ordered G. 

Therefore, the traditional least squares estimator of   can be written as: 

yZ T

OLS

1ˆ −=          (4) 

2.1.2 Ridge Regression Estimator 

Heorl and Kennard (1970) proposed Ridge regression estimator in other to deal with the problem of 

multicollinearity in regression analysis. The Ridge parameter was added to the G matrix to reduce the collinearity 

effect. The OLS estimator of α tends to have a large variance which was defined as;  

yXkIG T

ORR

1)(ˆ −+= .
        (5) 

where I is the pp   identity  matrix and 


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  is the ridge parameter such that p is the number of explanatory 

variable, 
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=


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2

2 is the Mean Square Error (MSE) and i̂  is an unbiased estimator of ̂ . 

2.1.3 Liu Regression Estimator 

To overcome the problem of multicollinearity in the data sets, Liu (1993) proposed the Liu Estimator by 

combining the Stein Estimator with Ridge estimator to form; 
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2.1.4 Kibria-Lukman Estimator 

Kibria and Lukman (2020) proposed another one parameter estimator that can combat the problem of 

multicollinearity in linear regression model aside already existing ones. They defined the estimator as: 

OLSp

T

pKL kIGkIG  ˆ)()(ˆ −+=
       

(7) 

where 
)/ˆ(ˆ2

ˆ
22

2

ii

k




+
=  and OLS̂  is the OLS estimator. 

2.1.5 Modified Ridge Type (MRT) Estimator 

Lukman et al. (2019) proposed the modified ridge-type estimator (MRT) as an alternative estimator to handle 

the problem of multicollinearity in linear regression model as it can be expressed in (8). 

( ) yXdkGAdk T

dk

MRT 1

, )1(ˆ),(ˆ −
++==  .     (8) 

where 0,))1(( 1

, kGIdkGA dk

−++= and 10  d .  

They expressed k and d as follows: 
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They affirmed that, the estimator can give the same results with the OLS and the ridge estimator majorly when 

0=k  and 0=d . 

 

2.1.6 Dawoud-Kibria Estimator  

As an alternative method of reducing the impact of multicollinearity in linear regression model, Dawoud and 

Kibria (2020) proposed a new biased estimator denoted as; 
DK̂ and defined as: 

OLSppDK IdkGIdkG  ˆ))1(())1((ˆ 1 +−++= −
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2.2 Robust Regression Estimators 

An iterative procedures that is designed to handle the problem of extreme observation(s) including influential 

points in the data sets and as well minimize their impact over the regression parameters is refers to as Robust regression 

(Zaman et al. 2001). In regression analysis, the main aim of robust estimation is to obtain dependable estimates or 

inferences for unknown parameters when there are anomalies such as outliers (Khan et al. 2021). Hence, the inferences 

obtained from robust estimation are more reliable because of their insensitivity to outliers either big or small. Some of 

the different kinds of robust regression are hereby discussed.  

 

2.2.1 M-Estimator 

Huber, (1964) proposed M-estimator as a robust method of dealing with outliers in regression analysis. Instead 

of minimizing the sum of squared errors, it minimizes the estimator ̂ . It is an extension of the maximum likelihood 

estimate method. (Yuliana and Susanti, 2008; Susanti et al. (2014)). The estimator is defined as in (10): 


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
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where s is a robust estimate of scale expressed as 
6745.0

)( ii umedianumedian
s

−
= . 

2.2.2 MM-Estimator 

` One of the most commonly robust regression techniques in the presence of extreme values is MM-estimator 

developed by Yohai (1987). In this technique, more than one M-estimation procedures were used to obtain the final 

estimates. The major aim of MM-estimator is to obtain parameters that have a high breakdown value and very efficient. 

The estimator is defined as: 
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where MMs is the standard deviation obtained from the residual of S-estimation and  is a Tukey’s biweight 

function. (Susanti et al., 2014). 

 

2.2.3 Least Median Squares (LMS) Estimator 

As an alternative to the Ordinary Least Squares Estimator (OLSE), Rousseeuw (1984) proposed LMS since, 

median is not usually affected by outliers. Instead of the mean value in OLS, the median value is used. The Least 

Median Squares estimator can be expressed as:  

)]([minˆ 2

iLMS umed =          (12) 

where, ie  is the residual from the OLS. 

 

2.2.4 Least Trimmed Square (LTS) Estimator  

As a highly efficient estimator to the Least Median Square (LMS), Rousseeuw (1984) proposed (LTS) 

estimator which is defined as;  


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2

:2

2
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2 )(...)()(  are the ordered squared errors from the least to the highest and 

1)1( +−= nh recommended by Rousseeuw and Leory (1987) such that  is the trimmed percentage. 

 

2.2.5 S-Estimator 

A high breakdown estimator which is capable of downsizing the dispersion of error terms in regression 

analysis is S-estimator developed by Rousseeuw and Yohai (1987). They defined the estimator by:  

),...,(ˆminˆ
1 nSS uu = .         (14) 
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2.2.5 Least Absolute Deviation (LAD) 

The Least Absolute Deviation (LAD) also known as Least Absolute Error (LAE) was firstly introduced by 

Boscovich in 1757 (Birkes and Dodge, 1993).  In the LAD, the coefficients are chosen so that the sum of the absolute 

deviation of the error terms is minimized. The mathematical expression of the estimator is defined as in equation 

(15):  


=

−=
n

i

iiLAD xy
1

ˆminˆ  .         (15) 

This method is very useful when the distribution of the residual does not follow a normal distribution. Also, 

LAD is robust when the contamination is in the y-direction. (Ahmed and Maha, 2016). 

 

2.2.7 Least Quartile of Squares (LQS) Estimator 

Least Quartile of Square (LQS) estimator was introduced by Rousseeuw (1984) and it is the generalization of 

Least Median Squares. It is based on the idea of choosing different quartiles. Also, LQS was built based on the 

proportion of observations equal to q such that a 1-q proportion of observations is considered an extreme observation. 
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The estimator is defined as: 

.           

           (16) 

 

 

where 
)(qr denotes the residual corresponding to the qth ordered absolute residual:  

)()2()1( ... nrrr  . 

 

2.3 Some Robust One and Two Ridge Regression Estimators 

2.3.1 Ridge-M Regression 

The ridge regression estimator was introduced by Hoerl and Kennard (1993) since OLSE is inefficient in the 

presence of multicollinearity. This was done by introducing a biasing parameter k into the design matrix of 𝐺. Also, it 

was noted that the Ridge Regression estimator is always affected by outliers in the y-direction, which led Silvapulle 

(1991) to propose robust ridge regression, defined as: 

𝛾𝑘
𝑀 = (𝑘𝐺−1 + 𝐼𝑝)

−1
𝛾𝑀        (17) 

where 𝛾𝑀 =  min
𝛾

∑ 𝜃 (
𝑢𝑖

𝑘
)𝑛

𝑖=1 , such that 𝛾𝑀 is the M-estimator, 𝑘 ≥ 0 and 𝑢𝑖 =  𝑦𝑖 − 𝑥𝑖
𝑇𝛾𝑀. 

The generalized robust Ridge Estimator is defined as: 

𝛾𝑅
𝐾 = (𝑘𝐺−1 + 𝐼𝑝)

−1
𝛾𝑅,        (18) 

where 𝛾𝑅 is each of the robust regression estimator (M, MM, S, LTS, LMS, LAD and LQS) 

 

2.3.1 Robust Liu Estimator 

The Liu estimator is another biased estimator to handle the problem of multicollinearity in a linear regression 

model. It was introduced by Liu (1993), which can be expressed as: 

𝛾𝐿 = (𝐺 + 𝐼)−1(𝑋𝑇𝑦 + 𝑑𝛾).        (19)
 

where 0<d<1and d are the biasing parameters. Meanwhile, the Liu estimator has been noted to be affected by the 

extreme values, especially in the y-direction; this led Arslan and Billor (2000) to propose its robust version, which 

can be defined as follows: 

𝛾𝑀
𝑑 = (𝐺 + 𝐼𝑝)

−1
(𝐺 + 𝑑𝐼𝑝)𝛾𝑀.       (20) 

The generalized robust Liu estimator is given as: 

𝛾𝑅
𝑑 = (𝐺 + 𝐼𝑝)

−1
(𝐺 + 𝑑𝐼𝑝)𝛾𝑅.       (21) 

 

2.3.2 Robust Kibria-Lukman Estimator 

As an alternative to the one-biasing parameter estimator aside Ridge and Liu estimator, Kibria and Lukman 

(2020) proposed K-L estimator, defined as: 

𝛾𝐾𝐿 = (𝐺 + 𝑘𝐼𝑝)
−1

(𝐺 − 𝑘𝐼𝑝)𝛾𝑂𝐿𝑆.       (22) 

The robust version of the K-L estimator when there are outliers in the y-direction was just recently proposed by [21], 

defined as: 

𝛾𝑀
𝐾𝐿 = (𝐺 + 𝑘𝐼𝑝)

−1
(𝐺 − 𝑘𝐼𝑝)𝛾.       (23) 

The generalized robust KL-estimator is defined as: 

𝛾𝑅
𝐾𝐿 = (𝐺 + 𝑘𝐼𝑝)

−1
(𝐺 − 𝑘𝐼𝑝)𝛾𝑅.       (24) 

2.4 Robust Two-Parameter Estimator 

In a bid to curtail the effect of multicollinearity in linear regression analysis, Ozkale and Kaciranlar (2007) came 

up with Two-parameter estimator. They defined the estimator as; 

𝛾𝑇𝑃 = (𝐺 + 𝑘𝐼𝑝)
−1

(𝐺 + 𝑘𝑑𝐼𝑝)𝛾𝑂𝐿𝑆.       (25) 

However, due to the sensitivity of the two-parameter estimator to outliers in the y-direction Awwad et al (2022) 

)(minargˆ
qLQS r


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proposed a robust version expressed as: 

𝛾𝑇𝑃
𝑀 = 𝐺 (𝐺 + 𝑘𝐼𝑝)

−1
(𝐺 + 𝑘𝑑𝐼𝑝)𝛾       (26) 

The generalized robust TP estimator can be expressed as: 

𝛾𝑅
𝑇𝑃 = 𝐺 (𝐺 + 𝑘𝐼𝑝)

−1
(𝐺 + 𝑘𝑑𝐼𝑝)𝛾𝑅       (27) 

 

2.5 Robust Dawoud-Kibria Estimator 

As an alternative, Dawoud and Abonazel (2021) proposed the DK estimator, which was noted to outperform 

others under some conditions and simulation studies. The estimator can be expressed as: 

𝛾𝐷𝐾 = 𝛾(𝐷𝐾) = (𝐺 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

(𝐺 − 𝑘(1 + 𝑑)𝐼𝑝)𝛾𝑂𝐿𝑆.    (28) 

to be already existing estimators that can deal with the problem of multicollinearity,  

since the presence of extreme observations in the response variable direction has been noted to influence the 

performance of the Dawoud-Kibria estimator, Hence, to combat this problem, Dawoud and Abonazel (2021) proceeded 

and proposed a robust version of DK estimator by introducing 𝛽̂𝑀 instead of 𝛾𝑂𝐿𝑆 used in the DK estimator. They 

defined the estimator as: 

𝛾𝑀(𝐷𝐾) = (𝐺 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

(𝐺 − 𝑘(1 + 𝑑)𝐼𝑝)𝛾𝑀.      (29) 

The generalized robust DK estimator is given as: 

𝛾𝑅(𝐷𝐾) = (𝐺 + 𝑘(1 + 𝑑)𝐼𝑝)
−1

(𝐺 − 𝑘(1 + 𝑑)𝐼𝑝)𝛾𝑅.      (30) 

 

2.6 Generalized Robust Modified Ridge Type (RMRT) Estimator. 

Lukman et al. (2020) proposed robust M-Modified Ridge Type estimator but when there are outliers in the y-

direction. The generalized version of robust-MRT is defined as: 

( ) Rp

RMRT

dk GIdkG 
1

),( )1(ˆ
−

++= .       (31) 

where R  is the individual robust regression estimators (MM, LTS, LMS, LAD, S and LQS), whereas k and d are the 

estimated biasing parameters for the robust MRT. 

Assume that 
R̂ ~N(0,1). This implies that 

R̂  follows a normal distribution with mean zero, variance equal one and 

covariance matrix equals 
12 −GA . When ( ) −2ˆ

Rn ~ ),0( 12 −AN , hence the assumption sustains most 

importantly for practical use, where
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The Harmonic mean of the biasing parameters for RMRT is as follows: 
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2.7 Investigation of the Estimators 

In order to examine the performance of all the estimators conserved in this study, the MSE of all the estimators 

were used as yardstick. Their MSEs were estimated as follows:  

( ) ( )
 
= = +

+
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i i
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Liu M-estimator has the MSE of: 
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Robust Kibria-Lukman has the following MSE: 
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MSE of robust Dawoud-Kibria is expressed as: 
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MSE of MRT is given as: 
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MSE of Robust MRT is given as in (32): 

( )2

222

)1(

ˆ)1(
))(ˆ(

dk

dk
MRTMSE

i

iiiiMRT

R
++

++
=




      (38) 

The value of k and d used in this study are one used by Yasin and Murat (2016) which 0.0012 and 0.5 respectively. 

3. Results  

  

3.1 Data Description 

Performances of the estimators were examined using two real-life data sets, the description of the data sets are 

as follows: 

 

3.1.1 First data set: Longly data 

The first data set is an economic data used by several authors such as Jahufer and Jianbao (2009), Jahufer (2013), 

Yasin and Murat (2016), Ullah et al. (2013), Kashif et al. (2019) and Lukman and Ayinde (2018), equation (39) is the 

regression model for the data. 

665544332211 xxxxxxy  +++++=       (39) 

where y is the total derived employment, 1x  is the gross national product implicit price deflator, 2x  is the gross national 

product, 3x  is unemployment, 4x  is the size of armed forces, 5x is the non-institutional population 14 years of age 

and over and 6x  is the time. Meanwhile, according to Walker and Birch, (1988) affirmed that the scaled Condition 

Number (CN) of the data is 43.275. Likewise, Liu (1993) claimed that the data suffered from the problem of 

multicollinearity in the values of the Variance Inflation Factor (VIF), which were estimated to be 128.29, 103.43, and 

70.87. Likewise, Midi affirmed the claim of Liu (1993) and spotted the presence of outliers in the data. 

  

3.1.2 Second data set: Hussein and Abdalla  

The second data set used is the data adopted by Hussein and Abdalla (2012). The linear model below is the 

regression model for the data set. 
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332211 xxxy  ++=
        (40)

 

where y is the product value in the manufacturing sector, 1x  is the value of the imported intermediate, 2x  represents 

the imported capital commodities and 3x  indicates the value of imported raw materials. Hussein and Abdalla (2012) 

claimed that the data suffers the problem of multicollinearity as the values of Variance Inflation Factor (VIF) which 

was estimated to be (128.26, 103.43, and 70.87). Likewise, Lukman, et al. (2014) affirmed the claim of Hussein and 

Abdalla (2012) and spotted the presence of outliers in the data.  

The value of parameter k and d used in this study are the one used by Yasin and Murat (2016), Ullah et al. (2013) 

and Kibria and Lukman (2020) which was computed as 0.0012 and 0.5 respectively. 

 

3.1.3 Third data set: Pasha and Shah data 

The regression model for the third data set is: 

5544332211 xxxxxy  ++++=        (41) 

The data was adopted from the study of Pasha and Shah (2004) and used by Kibria and Shipra (2016). y is the number 

of persons employed in (million), 1x is land cultivated in million hectares, 2x is the inflation rate in percentage, 3x is 

the number of establishments, 4x is the population in million meanwhile 5x is the literacy rate in percentage. Diagnosis 

of the data revealed that the data suffers the problem of multicollinearity except 2x with Variance Inflation Factor 

(VIF) 32.14, 2.50, 26.27, 71.03 and 22.70 respectively. Also, cases 1, 22 and 27 were identified as influential points 

indicating that the data set also suffers the problem of outliers. 

 

Table 1: MSE of all the Estimators using Longley data 

 

Robust-

M 
 

 
Robust-MM 

 
Robust-LTS 

Est MSE Rank Est MSE Rank Est MSE Rank 

MRT_M 3.711595 1 MRT_MM 3.297306 1 MRT_LTS 5.84645 1 

RE_M 3.715881 2 RE_MM 3.301336 2 RE_LTS 5.852522 2 

KL_M 1033.002 3 KL_MM 967.7889 3 KL_LTS 1474.428 3 

DK_M 747209.3 4 DK_MM 695469.5 4 DK_LTS 1079083 4 

M 848073.6 5 MM 795134.5 5 LTS 1208647 5 

LE_M 4.42E+14 6 LE_M 4.14E+14 6 LE_LTS 6.29E+14 6 

         

 
Robust-LMS 

 
Robust-LAD 

 
Robust-LQS 

Est MSE Rank Est MSE Rank Est MSE Rank 

MRT_LMS 29.79715 1 MRT_LAD 5.277665 1 MRT_LQS 6.846347 1 

RE_LMS 32.15782 2 RE_LAD 5.282754 2 RE_LQS 6.852588 2 

KL_LMS 531407.3 3 KL_LAD 1242.789 3 KL_LQS 1531.184 3 

DK_LMS 4.42E+08 4 DK_LAD 1017337 4 DK_LQS 1252269 4 

LMS 4.43E+08 5 LAD 1017598 5 LQS 1252591 5 

LE_LMS 2.30E+17 6 LE_LAD 5.30E+14 6 LE_LQS 6.52E+14 6 

         

 Robust-  
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S 

Est MSE Rank 

MRT_S 6.074775 1 

RE_S 6.080729 2 

KL_S 1452.106 3 

DK_S 1188988 4 

S 1189293 5 

LE_S 6.19E+14 6 

Source: Author’s computations 

Table 2: MSE of all the Estimators using Hussein and Abdalla data 

Robust-M  Robust-MM  Robust-LTS  
Est MSE Rank Est MSE Rank Est MSE Rank 

DK_M 1910.324 1 DK_MM 3111.204 1 DK_LTS 1065.013 1 

MRT_M 2211.919 2 MRT_MM 4849.813 2 MRT_LTS 3615.173          2 

RE_M 2212.154 3 RE_MM 4850.327 3 RE_LTS 3615.556 3 

M 2212.623 4 MM 4851.356 4 LTS 3616.323 4 

KL_M 99846.65 5 KL_MM 218921.9 5 KL_LTS 163189.9 5 

LE_M 1.02E+20 6 LE_MM 2.24E+20 6 LE_LTS 1.67E+20 6 

 
 

       
Robust-LMS  Robust-LAD  Robust-LQS  
Est MSE Rank Est MSE Rank Est MSE Rank 

DK_LMS 3594.858 1 DK_LAD 3040.12 1 DK_LQS 6327.969 1 

MRT_LMS 3596.003 2 MRT_LAD 3041.088 2 MRT_LQS 6329.983 2 

RE_LMS 3596.384 3 RE_LAD 3041.41 3 RE_LQS 6330.654 3 

LMS 3597.147 4 LAD 3042.056 4 LQS 6331.997 4 

KL_LMS 162324.6 5 KL_LAD 137275.6 5 KL_LQS 285737.2 5 

LE_LMS 1.66E+20 6 LE_LAD 1.40E+20 6 LE_LQS 2.92E+20 6 

         
Robust-S   
Est MSE      Rank 

DK_S 3632.8 1 

MRT_S 3633.957 2 

RE_S 3634.342 3 

S 3635.113 4 

KL_S 164037.8 5 

LE_S 1.68E+20 6 

Source: Author’s computations 

Table 3: MSE of all the Estimators using Pasha and Shah data 

 

Robus

t-M   
Robust-MM 

 

Robust-

LMS  
Robust-LQS 

Est MSE 
Ra

nk 
Est MSE 

Ra

nk 
Est MSE 

Ra

nk 
Est MSE 

Ra

nk 

MRT_

M 

68.92

64 
1 

MRT_

MM 
78.43 1 

MRT_

LMS 

78.07

65 
1 

MRT_

LQS 

85.81

17 
1 

RE_M 100.8 2 RE_M 114.7 2 RE_LM 114.2 2 RE_LQ 125.5 2 
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24 M 3 S 09 S 23 

M 
304.1

63 
3 MM 346.1 3 LMS 

344.5

41 
3 LQS 

378.6

75 
3 

RL_M 
84724

.6 
4 

RL_M

M 
96406 4 

RL_LM

S 

15615

.5 
4 

RL_LQ

S 

17667

.9 
4 

LE_M 
1.50E

+17 
5 

LE_M

M 

2.00E

+17 
5 

LE_LM

S 

1.70E

+17 
5 

LE_LQ

S 

1.80E

+17 
5 

         

 
Robust-LTS 

 

Robust-

LAD  

Robus

t-S  

Est MSE 
Ra

nk 
Est MSE 

Ra

nk 
Est MSE 

Ra

nk 

MRT_

LTS 

78.04

36 
1 

MRT_

LAD 

76.65

8 
1 MRT_S 

77.80

87 
1 

RE_LT

S 

114.1

6 
2 

RE_LA

D 

112.1

3 
2 RE_S 

113.8

17 
2 

LTS 
344.3

96 
3 LAD 

338.2

8 
3 S 

343.3

58 
3 

RL_LT

S 

95931

.4 
4 

RL_LA

D 
18254 4 RL_S 

19518

.3 
4 

LE_LT

S 

1.70E

+17 
5 

LE_LA

D 

2.00E

+17 
5 LE_S 

1.60E

+17 
5 

 

Source: Author’s computations 

3.2  Discussion  

From the data description, as it has been revealed in section 3.1.1, 3.1.2 and 3.1.3 that the data sets really suffer 

the problem of both multicollinearity and outliers as their VIFs is greater than 10 except 2x in section 3.1.3. Hence, 

from Table 1, it was observed that MRT_MM outperformed others has it has minimum MSE and the closest rival is 

RE_MM. In the same vein RE_M, MRT_LTS and RE_LTS in this order also did well. Meanwhile, the results from 

Table 2 revealed that DK_LTS is better when compared with other estimators whereas, MRT_M competes favourable 

with little margin. Applying the estimators to real-life data of Pasha and Shah (2004) as the results is shown in Table 

3, with the use of robust estimators, the problems have been mitigated. However, it was observed that MRT_M is the 

most efficient robust estimator among other robust estimators considered in the study as it has the minimum MSE. 

4. Conclusion 

When data is contaminated with multicollinearity and extreme values, it is evident that OLS is underperformed. 

In fact some of the robust estimators were found to be inconsistent in addressing the twin problem in term of their 

MSE. However, MRT_M, MRT_MM and MRT_LTS performed better. Also, RE_MM and DK_LTS did well. It was 

observed that M, MM, LTS, LMS, LAD, S, KL_M, KL_MM, LE_M, LE_MM among others could not perform well 

when both multicollinearity and extreme values occur in the data set. 
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