Statistical Analysis of Poisson Bifurcated Autoregressive Modeling

Authors

  • Ayanlowo A. Emmanuel Department of Basic Sciences, Babcock University, Ilisan-Remo, Ogun State. Nigeria Author
  • Oladapo D. Ifeoluwa Department of Mathematical Sciences, Adeleke university, Ede, Osun state Nigeria Author
  • Oladipupo O. Olusegun Department of Mathematics & Statistics, Redeemer’s University, Ede, Osun State, Nigeria Author
  • Olatayo O. Timothy Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Author

DOI:

https://doi.org/10.62054/ijdm/0104.11

Keywords:

PBAR model, BAR model, Exchange Rates, AIC, Forecasting Accuracy.

Abstract

This study evaluates the Poisson Bifurcated Autoregressive (PBAR) model for analyzing time-varying count data, focusing on exchange rate datasets from Anglophone countries. As an extension of the traditional Bifurcated Autoregressive (BAR) model, the PBAR model incorporates a Poisson-distributed error term, enabling it to capture non-Gaussian features and bifurcating structures common in degenerate economic data. Using historical exchange rates from the Central Bank of Nigeria’s Statistical Bulletin, the study compares the PBAR and BAR models based on Akaike Information Criterion (AIC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Results show the PBAR model consistently achieves better fit and accuracy. For Equatorial Guinea (XAF), PBAR recorded an AIC of 0.4077, MAE of 0.249, and RMSE of 0.875, while the BAR model had values of 0.4694, 0.847, and 1.075, respectively. Similarly, for Ghana (GHS), PBAR produced an AIC of 0.3500, MAE of 0.152, and RMSE of 1.026, outperforming BAR’s values of 0.4207, 1.080, and 1.086. Across all datasets, the PBAR model demonstrated improved accuracy and robustness. These findings highlight the PBAR model’s advantage in forecasting non-linear, bifurcating time series. The study concludes that PBAR offers a significant enhancement over traditional models, making it well-suited for financial econometrics applications where accurate modeling of count-based, irregular data is essential

References

Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika, 66(2), 237-242. https://doi.org/10.1093/biomet/66.2.237

Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR (1)) process. Journal of Time Series Analysis, 8(3), 261–275.

Boshnakov, G. N. (2006). Prediction with mixture autoregressive models. Research Report No. 6/2006, Probability and Statistics Group, School of Mathematics, The University of Manchester.

Cowan, R. (1984). Statistical concepts in the analysis of cell lineage data. 1983 Workshop Cell Growth Division (pp. 18-22). Melbourne: Latrobe University.

Cowan, R., & Staudte, R. G. (1986). The bifurcating autoregressive model in cell lineage studies. Biometrics, 42(4), 769–783.

Doornik, J. A., & Ooms, M. (2004). Inference and forecasting for ARFIMA models with an application to US and UK inflation. Studies in Nonlinear Dynamics and Econometrics, 8(12), 1-21. https://doi.org/10.2202/1558-3708.1218

Gerlach, C., Rohr, J. C., Perife, L., Rooij, N., Heijst, J. W. J., Velds, A., Urbanus, J., Naik, S. H., Jacobs, H., Beltman, J. B., de Boer, R. J., & Schumacher, T. N. M. (2013). Heterogeneous differentiation patterns of individual CD8+ T cells. Science, 340(6132), 635-639.

Guyon, J. (2007). Limit theorems for bifurcating Markov chains: Application to the detection of cellular aging. Annals of Applied Probability, 17(5-6), 1538–1569.

Guyon, J., Bize, A., Paul, G., Stewart, E., Delmas, J. F., & Taddéi, F. (2005). Statistical study of cellular aging. In CEMRACS 2004—Mathematics and applications to biology and medicine. ESAIM: Proceedings, 14, 100–114. Les Ulis: EDP Sciences.

Hannan, E. J. (1980). The estimation of the order of an ARMA process. The Annals of Statistics, 8(5), 1071-1081.

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society: Series B (Methodological), 41(2), 190-195.

Hannan, E. J., & Rissanen, J. (1982). Recursive estimation of mixed autoregressive-moving average order. Biometrika, 69(1), 81-94.

Hicks, D. G., Speed, T. P., Yassin, M., & Russell, S. M. (2018). Statistical inference in cell lineage trees. bioRxiv. https://doi.org/10.1101/267450

Hormoz, S., Singer, Z. S., Linton, J. M., Antebi, Y. E., Shraiman, B. I., & Elowitz, M. B. (2016). Inferring cell-state transition dynamics from lineage trees and endpoint single-cell measurements. Cell Systems, 3(5), 419-433.

Newbold, P. (1974). Forecasting transformed series. Journal of the Royal Statistical Society: Series B (Methodological), 36(1), 102-110. https://www.jstor.org/stable/2985025

Ojo, J. F., Olatayo, T. O., & Alabi, O. O. (2008). Forecasting in subsets autoregressive models and autoprojective models. Asian Journal of Scientific Research, 1(5), 481-491. https://doi.org/10.3923/ajsr.2008.481.491

Olatayo, T. O., & Adesanya, K. K. (2015). Bootstrap method for minimum message length autoregressive model order selection. Journal of the Nigerian Mathematical Society, 34(1), 106-114.

Olatayo, T. O., & Taiwo, A. I. (2015). A univariate time series analysis of Nigeria’s monthly inflation rate. African Journal of Science and Nature, 1(1), 39-44.

Olatayo, T. O., & Taiwo, A. I. (2016). Modelling and evaluation performances with neural network using climatic time series data. Nigerian Journal of Mathematics and Applications, 25, 205-216.

Olatayo, T. O., Taiwo, A. I., & Afolayan, R. B. (2014). Statistical modelling and prediction of time series data. Journal of the Nigerian Association of Mathematical Physics, 27, 201-208.

Sandler, O., Mizrahi, S. P., Weiss, N., Agam, O., Simon, I., & Balaban, N. Q. (2015). Lineage correlations of single-cell division time as a probe of cell-cycle dynamics. Nature, 519(7544), 468-471.

Saporta, B. D., Petit, A. G., & Marsalle, L. (2014). Computational statistics and data analysis. Computational Statistics & Data Analysis, 69, 15-39.

Terpstra, J. T., & Rao, M. B. (2001). Generalized rank estimates for an autoregressive time series: A U-statistics approach. Statistical Inference for Stochastic Processes, 4(2), 155-179.

Verma, J. P. (2015). Repeated measures design for empirical researchers. John Wiley & Sons.

Wong, C. S., Chan, W. S., & Kam, P. L. (2009). A Student t-mixture autoregressive model with applications to heavy-tailed financial data. Singapore Economic Review Conference 2009, 1–10.

Downloads

Published

2024-12-17

How to Cite

Statistical Analysis of Poisson Bifurcated Autoregressive Modeling. (2024). International Journal of Development Mathematics (IJDM), 1(4), 135-151. https://doi.org/10.62054/ijdm/0104.11

Similar Articles

1-10 of 99

You may also start an advanced similarity search for this article.