Quasi Metric Space with Binary Operation and Fixed Point Theorems
DOI:
https://doi.org/10.62054/ijdm/0204.01Keywords:
Quasi-metric space, binary operation, fixed point theorem, contractive mapping, asymmetry.Abstract
This paper develops a novel framework termed quasi-metric space with binary operation, which extends the concept of a metric space with binary operation introduced by Adewale et al. (2025). While their construction was based on a symmetric metric structure, the present study relaxes this assumption and considers quasi-metrics that allow asymmetry in distances. This generalization enables the exploration of non-reciprocal systems and direction sensitive mappings. We introduce operational quasi-metric spaces, establish new structural properties, and derive several fixed point theorems for contractive-type mappings. Illustrative examples demonstrate the
validity and generality of the results. Applications to convergence analysis and stability in computational systems are also outlined. Our findings generalise many known results and extend the theory of metric-type fixed points into the asymmetric domain.
References
Adewale O. Kayode, Ayodele S. Olusola, Loyinmi, A. Chris, Oyelade, B.
Eriwa, Iluno Christiana, Oyem Anthony, Adewale G. Adedayo(2025).
Metric Spaces with Binary Operation. Advance in Mathematics: Scientific Journal,14 (2), 211–225.
Loyinmi, A. C., Adewale, O. K., Ayodele, S. O., Iluno, C., Adeyemi, S.
E., & Ogunyale, A. O.(2025). Ciric Fixed Point Theorems in Metric
Spaces with Binary Operation. Journal of Science and Information
Technology(JOSIT), 19 (1), 145–159
Adewale, O. Kayode., Ayodele, S. Olusola., Osawaru, E. Kelly., & Onakoya,
A. Oluwapelumi.(2025). Exploring Fixed Points in Markov Chains:
A Mathematical Perspective. International Journal of Development
Mathematics(IJDM), 2 (3), 046–055.
Smith, J. D.(2010).Binary Operations and Their Applications in Algebraic
Structures. Journal of Algebra, 324(7), 1423–1435.
Johnson, M.(2015). Group Theory and Binary Operations: A New Perspective. Mathematical Structures in Computer Science, 25(4), 503–520.
Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur
application aux equations integrales. Fundamenta Mathematicae, 133-
Frechet, M. (1906).Sur quelques points du calcul fonctionnel, Rendiconti del
Circolo Matematico di Palermo, 22, 1-72.
Rusu,C.(2009). Some fixed point theorems in metric spaces with applications.
Nonlinear Analysis: Theory, Methods & Applications, 71(11), 5237–
Olusola Kayode Adewale,Samuel Olusola Ayodele, Babatunde Eriwa Oyelade, Emmanuella Ehui Aribike, Sunwa Adedoyin Raji & Glory Adedayo Adewale(2024).Fixed Point Theorems on a generalized Nb-metric
space.Global Scientific Journals(GSJ) Publishers,12(5), ISSN 2320-
Adewale, O.Kayode, Ayodele, S.Olusola, Oyelade, B.Eriwa, Akintunde,
O.Victoria, Aribike, E.Emmanuella, Raji, S.Adedoyin, & Adewale,
G.Adedayo.(2024): On Convex S-metric space.International Journal
of Mathematics Development (IJDM), 1(3), 101-111.
Olusola Kayode Adewale, Samuel Olusola Ayodele, Babatunde Eriwa Oyelade & Emmanuella Ehui Aribike(2024). Equivalence of some results and fixed-point theorems in S-multiplicative metric spaces. Fixed
Point Theory and Algorithms for Sciences and Engineering, 2024(1)
https://doi.org/10.1186/s13663-023-00756-9
Kirk, W. A., & Sims, B.(2003). Handbook of Metric Fixed Point Theory.
Springer
Ayodele,S.O., Adewale, O.K., Oyelade, B.E., Adeyemi, V.O., Aribike, E.E.,
Raji, S.A., Adewale, G.A.(2024): Fixed Point Theorems on Convex
Sb-metric space.Adv. Math. Sci. Journal, AMSJ-150325-11.
S. O. Ayodele, O. K. Adewale, B. E. Oyelade , O. F. Olayera, E. E. Aribike(2024). On quaternion-valued rectangular
S-metric space. International Journal of Mathematical Sci-
©2025 Department of Mathematics, Modibbo Adama University .
Ayodele et al. (2025). IJDM Volxxx Issue xxx |xxx − xxx|
ences and Optimization: Theory and Applications, 10(2),58–70.
https://doi.org/10.5281/zenodo.10937247
Adewale, O. K., Olaleru J. O., Olaoluwa, H., & Akewe H. (2019). Fixed point
theorems on γ-generalised quasi-metric spaces.Creative Mathematica
and Informatics, 28, 135-142.
Berinde, V.(2007). generalised contractions and fixed point theorems. Nonlinear Analysis: Theory, Methods & Applications, 68(12), 3689–3693.
Wilson, W. A.(1931).On quasi-metric spaces. American Journal of
Mathematics,53(3),675–684.
Matthews, S. G.(1994).Partial metric topology. Annals of the New York
Academy of Sciences,728, 183–197.
Khamsi, M. A., & Kirk, W. A.(2001). An introduction to metric spaces and
fixed point theory.Wiley, New York.
©2025 Department of Mathematics, Modibbo Adama University .
Downloads
Published
Data Availability Statement
Not Applicable.
Issue
Section
License
Copyright (c) 2025 Ayodele S. Olusola, Adewale O. Kayode, Raji R.Adedoyin, Osawaru, E. Kelly, Iluno Christiana, Oyelade B. Eriwa (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors are solely responsible for obtaining permission to reproduce any copyrighted material contained in the manuscript as submitted. Any instance of possible prior publication in any form must be disclosed at the time the manuscript is submitted and a
copy or link to the publication must be provided.
The Journal articles are open access and are distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 IGO License, which permits use,
distribution, and reproduction in any medium, provided the original work is properly cited.
No modifications or commercial use of the articles are permitted.




