Comparative Analysis of K-Means and Naïve Bayes Algorithms for Predicting Students' Academic Performance

Autori

  • Mohammed Musa Department of Computer Science Adamawa State Polytechnic, Yola Autore
  • Asabe Sandra Ahmadu Department of Computer Science, Faculty of Physical Sciences, Modibbo Adama University, Yola, Adamawa State. Nigeria Autore
  • Comfort Williams Department of Computer Science Adamawa State Polytechnic, Yola Autore

DOI:

https://doi.org/10.62054/ijdm/0103.15

Parole chiave:

Academic Performance, K-Means, Naïve Bayes, Prediction, Students,

Abstract

A student's performance is a victory statistic in higher education. The university's exceptional academic record strengthens its position as one of the prerequisites for a prestigious university. Teachers need to forecast and analyze student performance to pinpoint areas of weakness and improve academic standing. In academic settings, Coordination of computational tactics to improve workforce management and academic attainment is achieved through Educational Data Mining (EDM), a theory-based approach. Classification is a broadly connected technique in forecasting student performance based on diverse criteria. Machine learning algorithms are fundamental to knowledge disclosures, permitting precise performance projection and early student-identifiable proof. This study examines how well students perform academically using the Naïve Bayes classifier (NBC) model and the K-Means clustering approach. From supervised and unsupervised machine learning, two (2) algorithms with comparable operational capacity were selected. The labeled classes in the classifier correspond to the grades in the dataset. Records were gathered from 178 students (400 levels) in Adamawa State University Mubi's computer science departments in the 2022–2023 academic sessions. The training and testing sets of the dataset are divided into two groups, each with a percentage ratio of 30% and 70%. According to the results, the Naïve Bayes model has an accuracy of 92.6%, while the K-Means model has an accuracy of 38.9%.

Riferimenti bibliografici

Acevedo-Duque, Á., Jiménez-Bucarey, C., Prado-Sabido, T., Fernández Mantilla, M. M., Merino-Flores, I.,

Izquierdo-Marín, S. S. & Valle-Palomino N. (2023). Education for Sustainable Developments: Challenges for

Postgraduate Programmes. Int. J. Environ. Res. Public Health. 20:1759. doi: 10.3390/ijerph20031759.

Ahmad, Z., & Shahzadi, E. (2018). Prediction of students’ academic performances using artificial neural networks.

Bulletin of Education and Research, 40(3), 157–164.

Alamri, L. H., Almuslim, R, S., Alotibi, M, S., Alkadi, D. K. I., Ullah Khan, I. & N. Aslam, N. (2020) Predicting

students’ academic performance using support vector machine and random forest in Proceeding of the 2020

rd International Conference on Education Technology Management, pp. 100–107, London, UK, June 2020.

Alsariera, Y, A Y., Baashar, G, Alkawsi, G., Mustafa, A. Alkahtani, A. A. & Ali, N. (2022). Assessments and

evaluations of different machine learning algorithms for predicting student performance, Computational

Intelligence and Neuroscience 1–11, 2022.

Baashar, Y., Alkawsi, G., Ali, N. Alhussian, H. & Bahbouh, H. T. (2021). Predicting student performance using

machine learning method: a systematic literature review, in Proceedings of the 2021 International Conference

on Computer and Information Sciences (ICCOINS), pp. 357–362, Kuching, Malaysia, June 2021.

Bernacki, M. L., Chavez, M. M., and Uesbeck, P. M. (2020). Predicting achievement and providing support before

STEM major begin to fail. Computer and Education, 158(August), 103999.

https://doi.org/10.1016/j.compedu.2020.103999.

Daud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F. & Alowibdi, J. S. (2017). “Predicting students’

performance using advanced learning analytics.” in Proceeding of the 26th International Conference on World

Wide Web Companion—WWW ‘17 Companion. Republic and Canton of Geneva, CHE: International World

Wide Web Conferences Steering Committee. 415–421. doi: 10.1145/3041021.3054164.

Fly, O., Jet, A., Awodele, O., Hinmikaiye, J., O., Olakanmi, O. & J. Akinjobi, J. (2008). Supervised machine

learning algorithms: classification and comparison,” International Journal of Computers Trends and

Technology, vol. 48, no. 3, pp. 128–138, 2017.

Delavari, N., Phon-Amnuaisuk, S., & Beikzadeh, M. R., (2008). Data mining applications in higher learning

institutions, Informatics in Education, 7(1),31–54.

Ghorbani, R., & Ghousi, R. (2020). Comparing different resampling method in predicting student performance using

machine learning techniques, IEEE Access, 8, 67899–67911.

Kumar, V. U., Krishna, A., Neelakanteswara, P., and Basha, C. Z. (2020). “Advanced prediction of performance of a

students in an university using machine learning techniques.” in 2020 International Conference on Electronics

and Sustainable Communication Systems (ICESC). Coimbatore, India. 121–126. doi:

1109/ICESC48915.2020.9155557

Hasan, H, M., R., Rabby, A. K, M. A., Islam, M. T. & Hossain, S.A. (2019). Machine learning algorithms for

student performance prediction in Proceedings of the 2019 10th International Conference on Computing,

Communication and Networking Technologies (ICCCNT), 1–7, Kanpur, India, July 2019.

Nachouki, M., & Abou Naaj, M. (2022). Predicting student performance to improve academic advising using the

random forest algorithms, International Journal of Distance Educ. Technol., 20(1),1–17.

Jan.2022.

Shah, T. H. (2022). Research Anthology on Big Data Analytics, Architectures, and Application. Information

Resource Management Association; Hershey, PA, USA: 2022. Big data analytics in higher education.

–1293.

Tejedor, F. & García-Valcárcel, A. (2007). Causas del bajo rendimiento del estudiante universitario (en opinión de

los profesores y alumnos). Propuestas de mejora en el marco del EEES. Revista de Educación 342, 443–473.

Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=2254218.

Viale, H. (2014). Una aproximación teórica a la deserción estudiantil. Revista Digital de Investigación en Docencia

Universitaria. 8, 59–76. doi: 10.19083/ridu.8.366.

Vicerrectorado Académico, (2017). Cuando lo que se sabe nos dice cuánto no se sabe—Vicerrectorado Académico.

Available at:https://vicerrectorado.pucp.edu.pe/academico/noticias/cuando-lo-que-se-sabe-nos-dice-cuanto-no-

se-sabe/.

Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S. & Nawaz, R. (2020). Predicting academic

performances of student from VLE big data using deep learning models. Computer in Human Behavior,

(October 2019), 106189. https://doi.org/10.1016/j.chb.2019.106189.

Yauri, R. A., Suru, H. U., Afrifa, J. & Moses, H. G. (2023). A Machine Leaning Approach in Predicting Student

Academic Performance Using Artificial Neural Networks. Journal of Computational and Cognitive Engineering

https:// doi.org/10.47852/bonviewJCCE3202470.

Pubblicato

2024-09-09

Come citare

Comparative Analysis of K-Means and Naïve Bayes Algorithms for Predicting Students’ Academic Performance. (2024). International Journal of Development Mathematics (IJDM), 1(3), 196-208. https://doi.org/10.62054/ijdm/0103.15

Articoli simili

1-10 di 36

Puoi anche Iniziare una ricerca avanzata di similarità per questo articolo.