Comparative Analysis of K-Means and Naïve Bayes Algorithms for Predicting Students' Academic Performance
DOI:
https://doi.org/10.62054/ijdm/0103.15Parole chiave:
Academic Performance, K-Means, Naïve Bayes, Prediction, Students,Abstract
A student's performance is a victory statistic in higher education. The university's exceptional academic record strengthens its position as one of the prerequisites for a prestigious university. Teachers need to forecast and analyze student performance to pinpoint areas of weakness and improve academic standing. In academic settings, Coordination of computational tactics to improve workforce management and academic attainment is achieved through Educational Data Mining (EDM), a theory-based approach. Classification is a broadly connected technique in forecasting student performance based on diverse criteria. Machine learning algorithms are fundamental to knowledge disclosures, permitting precise performance projection and early student-identifiable proof. This study examines how well students perform academically using the Naïve Bayes classifier (NBC) model and the K-Means clustering approach. From supervised and unsupervised machine learning, two (2) algorithms with comparable operational capacity were selected. The labeled classes in the classifier correspond to the grades in the dataset. Records were gathered from 178 students (400 levels) in Adamawa State University Mubi's computer science departments in the 2022–2023 academic sessions. The training and testing sets of the dataset are divided into two groups, each with a percentage ratio of 30% and 70%. According to the results, the Naïve Bayes model has an accuracy of 92.6%, while the K-Means model has an accuracy of 38.9%.
Riferimenti bibliografici
Acevedo-Duque, Á., Jiménez-Bucarey, C., Prado-Sabido, T., Fernández Mantilla, M. M., Merino-Flores, I.,
Izquierdo-Marín, S. S. & Valle-Palomino N. (2023). Education for Sustainable Developments: Challenges for
Postgraduate Programmes. Int. J. Environ. Res. Public Health. 20:1759. doi: 10.3390/ijerph20031759.
Ahmad, Z., & Shahzadi, E. (2018). Prediction of students’ academic performances using artificial neural networks.
Bulletin of Education and Research, 40(3), 157–164.
Alamri, L. H., Almuslim, R, S., Alotibi, M, S., Alkadi, D. K. I., Ullah Khan, I. & N. Aslam, N. (2020) Predicting
students’ academic performance using support vector machine and random forest in Proceeding of the 2020
rd International Conference on Education Technology Management, pp. 100–107, London, UK, June 2020.
Alsariera, Y, A Y., Baashar, G, Alkawsi, G., Mustafa, A. Alkahtani, A. A. & Ali, N. (2022). Assessments and
evaluations of different machine learning algorithms for predicting student performance, Computational
Intelligence and Neuroscience 1–11, 2022.
Baashar, Y., Alkawsi, G., Ali, N. Alhussian, H. & Bahbouh, H. T. (2021). Predicting student performance using
machine learning method: a systematic literature review, in Proceedings of the 2021 International Conference
on Computer and Information Sciences (ICCOINS), pp. 357–362, Kuching, Malaysia, June 2021.
Bernacki, M. L., Chavez, M. M., and Uesbeck, P. M. (2020). Predicting achievement and providing support before
STEM major begin to fail. Computer and Education, 158(August), 103999.
https://doi.org/10.1016/j.compedu.2020.103999.
Daud, A., Aljohani, N. R., Abbasi, R. A., Lytras, M. D., Abbas, F. & Alowibdi, J. S. (2017). “Predicting students’
performance using advanced learning analytics.” in Proceeding of the 26th International Conference on World
Wide Web Companion—WWW ‘17 Companion. Republic and Canton of Geneva, CHE: International World
Wide Web Conferences Steering Committee. 415–421. doi: 10.1145/3041021.3054164.
Fly, O., Jet, A., Awodele, O., Hinmikaiye, J., O., Olakanmi, O. & J. Akinjobi, J. (2008). Supervised machine
learning algorithms: classification and comparison,” International Journal of Computers Trends and
Technology, vol. 48, no. 3, pp. 128–138, 2017.
Delavari, N., Phon-Amnuaisuk, S., & Beikzadeh, M. R., (2008). Data mining applications in higher learning
institutions, Informatics in Education, 7(1),31–54.
Ghorbani, R., & Ghousi, R. (2020). Comparing different resampling method in predicting student performance using
machine learning techniques, IEEE Access, 8, 67899–67911.
Kumar, V. U., Krishna, A., Neelakanteswara, P., and Basha, C. Z. (2020). “Advanced prediction of performance of a
students in an university using machine learning techniques.” in 2020 International Conference on Electronics
and Sustainable Communication Systems (ICESC). Coimbatore, India. 121–126. doi:
1109/ICESC48915.2020.9155557
Hasan, H, M., R., Rabby, A. K, M. A., Islam, M. T. & Hossain, S.A. (2019). Machine learning algorithms for
student performance prediction in Proceedings of the 2019 10th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), 1–7, Kanpur, India, July 2019.
Nachouki, M., & Abou Naaj, M. (2022). Predicting student performance to improve academic advising using the
random forest algorithms, International Journal of Distance Educ. Technol., 20(1),1–17.
Jan.2022.
Shah, T. H. (2022). Research Anthology on Big Data Analytics, Architectures, and Application. Information
Resource Management Association; Hershey, PA, USA: 2022. Big data analytics in higher education.
–1293.
Tejedor, F. & García-Valcárcel, A. (2007). Causas del bajo rendimiento del estudiante universitario (en opinión de
los profesores y alumnos). Propuestas de mejora en el marco del EEES. Revista de Educación 342, 443–473.
Available at: https://dialnet.unirioja.es/servlet/articulo?codigo=2254218.
Viale, H. (2014). Una aproximación teórica a la deserción estudiantil. Revista Digital de Investigación en Docencia
Universitaria. 8, 59–76. doi: 10.19083/ridu.8.366.
Vicerrectorado Académico, (2017). Cuando lo que se sabe nos dice cuánto no se sabe—Vicerrectorado Académico.
Available at:https://vicerrectorado.pucp.edu.pe/academico/noticias/cuando-lo-que-se-sabe-nos-dice-cuanto-no-
se-sabe/.
Waheed, H., Hassan, S. U., Aljohani, N. R., Hardman, J., Alelyani, S. & Nawaz, R. (2020). Predicting academic
performances of student from VLE big data using deep learning models. Computer in Human Behavior,
(October 2019), 106189. https://doi.org/10.1016/j.chb.2019.106189.
Yauri, R. A., Suru, H. U., Afrifa, J. & Moses, H. G. (2023). A Machine Leaning Approach in Predicting Student
Academic Performance Using Artificial Neural Networks. Journal of Computational and Cognitive Engineering
https:// doi.org/10.47852/bonviewJCCE3202470.
Dowloads
Pubblicato
Fascicolo
Sezione
Licenza
Copyright (c) 2024 International Journal of Development Mathematics (IJDM)

Questo volume è pubblicato con la licenza Creative Commons Attribuzione 4.0 Internazionale.
Authors are solely responsible for obtaining permission to reproduce any copyrighted material contained in the manuscript as submitted. Any instance of possible prior publication in any form must be disclosed at the time the manuscript is submitted and a
copy or link to the publication must be provided.
The Journal articles are open access and are distributed under the terms of the Creative
Commons Attribution-NonCommercial-NoDerivs 4.0 IGO License, which permits use,
distribution, and reproduction in any medium, provided the original work is properly cited.
No modifications or commercial use of the articles are permitted.